Tracial Rokhlin property for automorphisms on simple AT-algebras

نویسنده

  • Huaxin Lin
چکیده

Let A be a unital simple AT-algebra of real rank zero. Given an isomorphism γ1 : K1(A)→ K1(A), we show that there is an automorphism α : A → A such that α∗1 = γ1 which has the tracial Rokhlin property. Consequently, the crossed product A ⋊α Z is a simple unital AH-algebra with real rank zero. We also show that automorphism with Rokhlin property can be constructed from minimal homeomorphisms on a connected compact metric space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Rokhlin Property for Automorphisms on Simple C-algebras

We study a general Kishimoto’s problem for automorphisms on simple C∗-algebras with tracial rank zero. Let A be a unital separable simple C∗-algebra with tracial rank zero and let α be an automorphism. Under the assumption that α has certain Rokhlin property, we present a proof that A ⋊α Z has tracial rank zero. We also show that if the induced map α∗0 on K0(A) fixes a “dense” subgroup of K0(A)...

متن کامل

Furstenberg Transformations on Irrational Rotation Algebras

We introduce a general class of automorphisms of rotation algebras, the noncommutative Furstenberg transformations. We prove that fully irrational noncommutative Furstenberg transformations have the tracial Rokhlin property, which is a strong form of outerness. We conclude that crossed products by these automorphisms have stable rank one, real rank zero, and order on projections determined by t...

متن کامل

Stable and Real Rank for Crossed Products by Automorphisms with the Tracial Rokhlin Property

We introduce the tracial Rokhlin property for automorphisms of stably finite simple unital C*-algebras containing enough projections. This property is formally weaker than the various Rokhlin properties considered by Herman and Ocneanu, Kishimoto, and Izumi. Our main results are as follows. Let A be a stably finite simple unital C*-algebra, and let α be an automorphism of A which has the tracia...

متن کامل

Local tracial C*-algebras

‎Let $Omega$ be a class of unital‎ ‎$C^*$-algebras‎. ‎We introduce the notion of a local tracial $Omega$-algebra‎. ‎Let $A$ be an $alpha$-simple unital local tracial $Omega$-algebra‎. ‎Suppose that $alpha:Gto $Aut($A$) is an action of a finite group $G$ on $A$‎ ‎which has a certain non-simple tracial Rokhlin property‎. ‎Then the crossed product algebra‎ ‎$C^*(G,A,alpha)$ is a unital local traci...

متن کامل

Finite Cyclic Group Actions with the Tracial Rokhlin Property

We give examples of actions of Z/2Z on AF algebras and AT algebras which demonstrate the differences between the (strict) Rokhlin property and the tracial Rokhlin property, and between (strict) approximate representability and tracial approximate representability. Specific results include the following. We determine exactly when a product type action of Z/2Z on a UHF algebra has the tracial Rok...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006